منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولSome More Recent Results concerning Weak Asplund Spaces
In this paper, we will provide some examples of Banach spaces that are Gâteaux differentiability spaces but not weak Asplund, weak Asplund but not in class(̃), in class(̃) but whose dual space is not weak∗ fragmentable. We begin with some definitions. A Banach space X is called a weak Asplund space [almost weak Asplund] (Gâteaux differentiability space) if each continuous convex function define...
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملSplitting of some more spaces
In (4) we showed how to stably split certain spaces OX built up from a ' coefficient system' ^ and a 'II-space' X. Via an approximation theorem relating particular examples to loop spaces, there resulted stable splittings of Q.~LX for all n ^ 1 and all (path) connected based spaces X. In this short sequel to (4) we shall introduce and split a new construction CX. Via an approximation theorem, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Mathematical Bulletin
سال: 2000
ISSN: 0008-4395,1496-4287
DOI: 10.4153/cmb-2000-033-0